Nevanlinna, Siegel, and Cremer

نویسنده

  • YÛSUKE OKUYAMA
چکیده

We study an irrationally indifferent cycle of points or circles of a rational function, which is either Siegel or Cremer by definition. We invent a new argument from the viewpoint of the Nevanlinna theory. Using this argument, we give a clear interpretation of some Diophantine quantity associated with an irrationally indifferent cycle. This quantity turns out to be Nevanlinnatheoretical. As a consequence, we show that an irrationally indifferent cycle is Cremer if this Nevanlinna-theoretical quantity does not vanish.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biaccessiblility in Quadratic Julia Sets Ii the Siegel and Cremer Cases

Let f be a quadratic polynomial which has an irrationally indi erent xed point Let z be a biaccessible point in the Julia set of f Then In the Siegel case the orbit of z must eventually hit the critical point of f In the Cremer case the orbit of z must eventually hit the xed point Siegel polynomials with biaccessible critical point certainly exist but in the Cremer case it is possible that biac...

متن کامل

2 Xavier Buff And

We prove the existence of quadratic polynomials having a Julia set with positive Lebesgue measure in three cases: the presence of a Cremer fixed point, the presence of a Siegel disk, the presence of infinitely many (satellite) renormalizations.

متن کامل

Xavier Buff and Arnaud Chéritat

We prove the existence of quadratic polynomials having a Julia set with positive Lebesgue measure. We find such examples with a Cremer fixed point, with a Siegel disk, or with infinitely many satellite renormalizations.

متن کامل

Singularities of Schröder Maps and Unhyperbolicity of Rational Functions

We study transcendental singularities of a Schröder map arising from a rational function f , using results from complex dynamics and Nevanlinna theory. These maps are transcendental meromorphic functions of finite order in the complex plane. We show that their transcendental singularities lie over the set where f is not semihyperbolic (unhyperbolic). In addition, if they are direct, then they l...

متن کامل

On Atkin-Lehner correspondences on Siegel spaces

‎We introduce a higher dimensional Atkin-Lehner theory for‎ ‎Siegel-Parahoric congruence subgroups of $GSp(2g)$‎. ‎Old‎ ‎Siegel forms are induced by geometric correspondences on Siegel‎ ‎moduli spaces which commute with almost all local Hecke algebras‎. ‎We also introduce an algorithm to get equations for moduli spaces of‎ ‎Siegel-Parahoric level structures‎, ‎once we have equations for prime l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003